سامانه پژوهشی – 
روش های تصویری عمومی برای مسائل بزرگ- قسمت ۳

سامانه پژوهشی – روش های تصویری عمومی برای مسائل بزرگ- قسمت ۳

اکتبر 20, 2020 Off By مدیر سایت

در ادامه الگوریتم متعامدسازی گراماشمیت را بطور مختصر شرح میدهیم.
۷-۱ الگوریتم متعامدسازی گرام اشمیت
مجموعه از بردارهای مستقل خطی را در نظر بگیرید. با استفاده از الگوریتم متعامدسازی گرام اشمیت میتوان این مجموعه را به مجموعهای متعامد یکه تبدیل کرد.
۱-۷-۱ الگوریتم گرام اشمیت
ورودی الگوریتم: مجموعهای از بردارهای مستقل
خروجی الگوریتم: مجموعهای بردارهای متعامد یکه
قرار دهید: ؛ اگر پایان روند، در غیر اینصورت .
به ازاء و مقادیر زیر را بدست آورید.
هرگاه ، پایان روند، در غیر این صورت .
الگوریتم فوق روند گرام اشمیت استاندارد نامیده میشود. الگوریتم مشابهی وجود دارد که از لحاظ ریاضی معادل با روند گرام اشمیت استاندارد است، ولی خصوصیات عددی بهتری دارد که آن را روند گرام اشمیت اصلاح شده مینامندکه در ادامه بطور مختصر توضیح داده می شود.
۱-۷-۲ الگوریتم گرام اشمیت اصلاح شده
قرار دهید: ؛ اگر پایان روند، در غیر اینصورت .
به ازاء مقادیر زیر را بدست آورید.
به ازای مقادیر زیر را بدست آورید:
,
هرگاه ؛ پایان روند، در غیر اینصورت .
در این فصل تعاریف لازم که در پایاننامه استفاده میشود بیان شد. در مورد تجزیهی و توضیح مختصری داده شد، هم چنین فضاهای ضرب داخلی به ویژه زیرفضای کرایلف معرفی شد و در آخر فصل الگوریتم متعامدسازی گرام اشمیت که برای تبدیل مجموعههای بردارهای مستقل به مجموعهی بردارهای یکه استفاده میشود بیان شد. درادامه به معرفی روشهای زیرفضای کرایلف برای حل مسائل مقدارویژه میپردازیم.
فصل ۲
روشهای زیر فضای کرایلف
برای حل
مسائل مقدار ویژه
فصل ۲ روشهای زیر فضای کرایلف برای حل مسائل مقدار ویژه
۲-۱ مقدمه
از جمله روشهای مهم برای محاسبه مقادیر ویژه و بردارهای ویژه ماتریسهای بزرگ، روشهای تصویری متعامد و متمایل است. در این فصل دستهای از مهمترین روشهای تعیین مقادیر ویژه ماتریسهای بزرگ بر اساس این روشها بررسی میشود.
۲ـ۲ زیرفضای کرایلف
قضیه ۲ـ۱: زیرفضای کرایلف از بعد است اگر و فقط اگر درجه چندجملهای مینیمال در رابطه با ماتریس بزرگتر از باشد .
اثبات: بردارهای تشکیل یک پایه برای زیرفضای کرایلف میدهند اگر و فقط اگر برای هر سطر , ترکیب خطی ناصفر باشد و این شرط معادل با این است که چندجملهای از درجه کمتر یا مساوی ، برای وجود ندارد، و این اثبات را کامل میکند.
تعدادی از روشهای زیرفضای کرایلف عبارتند از:
۱ـ روش آرنولدی
۲ـ روش هرمیتی لنگزوس
۳ـ روش ناهرمیتی لنگزوس
هر یک از روشهای فوق را به صورت بلوکی نیز میتوان بهکار برد که در این صورت این روشها را روشهای بلوکی زیرفضای کرایلف مینامند. روشهای آرنولدی و لنگزوس روشهای تصویری متعامد هستند، در حالی که روش ناهرمیتی لنگزوس روش تصویری متمایل است.
۲ـ۳ فرآیند آرنولدی
فرآیند آرنولدی، روش تصویری متعامد روی زیرفضای کرایلف است. این روش برای به دست آوردن مقادیر ویژه تقریبی ماتریسهای تنک و حل دستگاههای خطی بزرگ به وجود آمده است که بر مبنای ساختن یک زیرفضا که زیرفضای کرایلف نامیده میشود، استوار است.
انتخاب بردار اولیه در این روش بسیار مهم است. لذا روشهای مختلفی برای انتخاب این بردارها وجود دارد.
۲-۳-۱ الگوریتم آرنولدی
۱ـ بردار اولیه با نرم یک و بعد از زیرفضای کرایلف را انتخاب کنید.
۲ـ به ازاء مقادیر ویژه زیر را محاسبه کنید:
معیار توقف الگوریتم زمانی است که بردار صفر شود، در این الگوریتم درایههای ماتریس هسنبرگ و بردارهای ماتریس متعامد را به وجود میآورند. در ادامه جزئیات مهمی از الگوریتم ارائه شده است.
مزایای روش آرنولدی
۱ـ در بسیاری از مسائل کاربردی هنگام برخورد با مسئله تعیین مقادیر ویژه یک ماتریس بزرگ، نیاز به تعیین تمام مقادیر ویژه آن نیست، بلکه معمولاً در این گونه مسائل محاسبه مقدار ویژه از تمام مقدار ویژه ماتریس بزرگ کفایت میکند.

دانلود متن کامل این پایان نامه در سایت abisho.ir